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In 1950 Reissner [1] derived equations for finite symmetrical deformation of thin shells of
revolution, the surface of which is given by parametric Eqa. r =7 (£) and z = z (£) £ is the
parameter), without assumption about any degree of smallness of the angle of rotation of
the shell element as a result of the deformation. In the case of a shallow shell and the as-
sumption of smallness of angles of rotation, from these equations the well known equations
of the shallow theory may be obtained. At the present moment the study of the latter has
made a certain amount of progress, however the necessity for studying more exact equa-
tions of nonlinear theory of shells becomes more and more apparent.

This work is devoted to the proof of the existence theorem of solutions of Reissner’s
equations for varicus boundary conditions but with some limitations placed on the class
of shells to be studied. Namely, we shall assume that for 0 << a < § b < 00, i.e.in
the range of variation of parameter £ the following conditions apply
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This includes a rather broad class of shells of revolution such as cylindrical, toroidal,
spherical with a cutout pole, ring-shaped, plate«shaped etc. However, this conditions ex-
cludes some important types of shells such as spherical dome and circular plate. We shall
assume that this limitation is not related to the substance of the matter and hope to re-
move it in the futore.,

Existence theorems in the nonlinear theory of shallow shells were obtained in papers
of Vorovich [2 and 3] for a variety of boundary conditions. The problem to be examined
below in the theory of nonshallow shells is interesting from the point of view of methodology
because together with nonlinear differential equations of equilibrium end simultaneous shell
deformation, nonlinear boundary conditions also apply. For the proof of the existence
theorem here the method of paper [3] is applied.

The following system of nonlinear differential equation is examined.
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with the boundary conditions
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Problem (1), (2} is the system of equations of Reissner for symmetrical deformation of
a thin shell of revolution with constant thickness, The surface of the shell is given by para-
metric Eq. 7 =7 (&) and z = 2 (£). Here O, (£) is the angle which the element of the shell
forms at the point corresponding to & before deformation with the axis of the abscissa;
® (£) ia the angle after deformation, ¥ is the horizontal component of stress; T = (+V) is
the vertical component of stress, £ is Young's modulus, v is Poissan’s ratio, p = p
and ¢ = Py, are the horizontal and vertical componeats of loading which depend on the in-
tensity of loading p (£) and the angle 8 (£). For example, in the case of the spherical dome
under hydrostatic pressure of constant intensity p , we have

r(E)==Rsink, z()=—HAcosE, (@y=E; p==-—psin(f—PB), g=pcos(f—p)

while in the case of a cylindrical shell it is necessary to write r=R, 2= Rf and O = ¥
where R is the radins of the base of the cylinder.

Boundary conditions (2) are selected for the sake of definiteness. The first of these
for £ = a indicades that the corresponding edge of the shell is rigidly clamped sndis free
of stresses. The second condition for £= b describes fixed hinge-type attachment of the
shell along the edge.

Let us introduce Banach spaces of functions

1) Spaces Cj of continuous functions, definite in the interval [a, 5], having derivatives
to k-th order included, with the norm
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2) Space H, of pair of functions x = (x;, x,), where 2, & C,, and 23 € €} ywith the nom
ﬁzgﬁl = “Ilﬂcl + RIZRCL
3) Space H, of pair of functions y = (y,, y,), where y; & C,, and ¥3 € C;, with the nom
1y iz = My “Cz + ly. "Cz

4) Space H, of pair functions ¢ = (0,, 0,), formed by closure with respect to the norm of
the set of smooth functions vanishing at £ = a:
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5) Space H, of pair of functions 1 = (1,, 2,), formed by closure with respect to the aom
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of the set of smooth functions vanishing for £= a:
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Theorem 1. Let

MEC, P EC, ¥EC, 0KLr/a<h<owo, a<ELH (3)

Then the boundary value problem (1), (2) has at least one solution u = (8, ¥), com-
ponents of which are elements of space C2.

For the proof of the theorems we shall apply the principle of Lerei and Shauder [4 and
5] on the existence of fixed points of completely continuous transformations.

We shall examine the family of operators depending on parameter A & [0, 1}
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For A = 1 problem (4), (5) transforms into (1), (2), and for A = 0 it has a unique solu-
tion B =¥ =0,

The following linear problem is compared with the nonlinear problem (4), (5)
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which consist of determining functions 8, ¥ with respect to known functions @,y . The
linear problem (6), (7) is solvable and the uniqueness theorem is applicable to it. There-
fore the pair of functions u = (8, ¥) is uniquely determined with respect to v = (9, V).
This correspondence determines the nonlinear operator

u=0L (v, A) (8)

which is comparable to any A in [0.1} and v (£) from space H, of solution of problem (5),
(6). Fixed points of transformation L (4, A) will be solutions of problem (4}, (5) and vice
versa.
In this manner problem (4), (5) is reduced to solution of the problem
u=0L(u,A) (9
Lemma. For the soluntion of problem (4), (5) the following estimates are applicable,
which are uniform with respect to A & [0, 1]:
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where the constant m depends on {,, ||a%p “Lz and |jalq ||f,-
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For the purpose of proof we multiply the second Eq. of system (4) by ¥ and integrate
from a to b. Integrating by parts with consideration of boundary conditions (5), we obtain
b
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Utilizing the following inequality which is applicable by virtue of (3):

b
voi< (s (F )" )
a
and also the inequality of Buniakowski we derive from here
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where m, is some constant.

Taking into account the expression for T given in (1), we derive from (12) the first
estimate (10) with the aid of (3). The second estimate is obtained by applying (11).

To obtain the third estimate in (10), we multiply the first Eq. of system (4) by B and
integrate from a to b. We obtain
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From here, applying (3) to the left part and utilizing the inequality of Buniakowski
we obtain the desired estimate. Lemma is proved.

Now we derive the bounds for 8 and Jln the nom C,. For this purpose first of all we
change from aystem (4), (5) to the equivalent system of integral equations.

For example for the first Eq. we obtain

B _ s ¢
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(the second Egq. is the same, but with a substitation of F, by F, and fiby f).
From explicit expressions F,, F,, f, and f, utilizing estimate (10) we derive

1Fale, Kms,  1Fal, <ms, [hic, <ms, 1/alg, <ms (14)
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for the condition that p (3) < o0 and bounded norms

la*pl,, fa*rfp, LEST T
By virtue of (14) we have from (13)
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Finally we shall demonstrate that when the conditions of the theorem are fulfilled the
following bounds apply

axlElen | <n “6’

For this purpose the term with the first derivative in Eqgs. (4) is transferred to the
right side. Applying (10), {15) and conditions of the Theorem with regard to p and g we
evaluate the right-hand parts and also f, and f, and derive (16).

Let us return to the operator Eq. (9). Let us show that L is a completely continuous
operator in the space H,. For this purpose let us examine F, (p, ¥), Fy (p, ), /1 (¢) and
f2 (@, }). We obtain that F,, F, are elements of space C,, while f, and f, are elements of
space C;. Then solutions of problem (6), (7) will belong to space A, and estimates (16)
will be applicable to them.

Since the set of functions bounded in the norm C, is compact in space C, we have that
any set bounded in H, is transformed by operator L into a compact one. The complete
continuity of operator L follows from this. It is also simple to establish the gradual con-
tinuity of transformation L (u, A} with respect to A,

Thus all conditions of the Lerei-Shauder principle are satisfied and consequently
Eq. (8) has at least one solution in H,. In fact this solution will be smoother by virtue of
(16). Therefore solution of problem (1), (2) will belong to space H,, and the Theorem is
proved.

Theorem 2. Let

o EL, aop&l, aPpEl, oE&L, apl,<lwo

and condition (3) is also applicable. Then the boundary value problem (1), (2) has at least
one solution u = (B, ¥), which is an element of space H,.

The proof is the same as in Theorem 1, it is only necessary to replace space H, by
H; and H: by H‘-

The author expresses his gratitude to L.I. Vorovich and V.l ITudovich for assistance
in the work.
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